Semistability of Frobenius Direct Images
نویسندگان
چکیده
— Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field k of characteristic p > 0. Given a semistable vector bundle E over X, we show that its direct image F∗E under the Frobenius map F of X is again semistable. We deduce a numerical characterization of the stable rank-p vector bundles F∗L, where L is a line bundle over X. Résumé (Semi-stabilité des images directes par Frobenius sur les courbes) Soit X une courbe projective lisse de genre ≥ 2 définie sur un corps k algébriquement clos de caractéristique p > 0. Étant donné un fibré vectoriel semi-stable E sur X, nous montrons que l’image directe F∗E par le morphisme de Frobenius F de X est aussi semi-stable. Nous déduisons une caractérisation numérique du fibré vectoriel stable F∗L de rang p, où L est un fibré en droites sur X.
منابع مشابه
Semistability of Frobenius direct images over curves
Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field k of characteristic p > 0. Given a semistable vector bundle E over X , we show that its direct image F∗E under the Frobenius map F of X is again semistable. We deduce a numerical characterization of the stable rank-p vector bundles F∗L, where L is a line bundle over X .
متن کاملFrobenius Morphism and Semi-stable Bundles
This article is the expanded version of a talk given at the conference: Algebraic geometry in East Asia 2008. In this notes, I intend to give a brief survey of results on the behavior of semi-stable bundles under the Frobenius pullback and direct images. Some results are new.
متن کاملSheaf Cohomology Course Notes, Spring 2010
Overview 1 1. Mymotivation: K-theory of schemes 2 2. First steps in homological algebra 3 3. The long exact sequence 6 4. Derived functors 8 5. Cohomology of sheaves 10 6. Cohomology of a Noetherian Affine Scheme 12 7. Čech cohomology of sheaves 12 8. The Cohomology of Projective Space 14 9. Sheaf cohomology on P̃2 16 10. Pushing around sheaves, especially by the Frobenius 17 11. A first look at...
متن کاملThe infinitestimal operator for the semigroup of the Frobenius-Perron operator from image sequence data: Vector fields and computational measurable dynamics from movies
We present in this paper an approach to approximate the Frobenius-Perron transfer operator from a sequence of time-ordered images, that is, a movie dataset. Unlike time-series data, successive images do not provide a direct access to a trajectory of a point in a phase space; more precisely, a pixel in an image plane. Therefore, we reconstruct the velocity field from image sequences based on the...
متن کاملStability of Direct Images under Frobenius Morphism
Let X be a smooth projective variety over an algebraically field k with char(k) = p > 0 and F : X → X1 be the relative Frobenius morphism. When dim(X) = 1, we prove that F∗W is a stable bundle for any stable bundle W (Theorem 2.3). As a step to study the question for higher dimensional X , we generalize the canonical filtration (defined by Joshi-Ramanan-Xia-Yu for curves) to higher dimensional ...
متن کامل